N10 RIGID MOTION DETAILS	Name N10
N10 RIGID MOTION DETAILS	Name N10 Description: A transformation of the plane is a function that assigns to each point <i>P</i> of the plane a unique point <i>F(P)</i> in the plane. Rigid motions are transformations that preserve of segments and of angles. A dilation is an example of a transformation that preserves measures but not the lengths of segments. In this lesson, we will work only with rigid transformations. We call a figure that is about to undergo a transformation the while the figure that results
Diagram C C D D C D C D C D D D D C D D D C D D D D D D D D D D D D D	Description: Reflections are rigid motion functions of the plane such that: (a) Any point P on the line of the reflection maps to (P' = P) (b) Any point Q not on the line of reflection maps to Q' such that the line of reflection is the of $\overline{QQ'}$. Notation: $r_m(Q)$ means reflect Q across line m.
Diagram Term Rotation C' B' B B A P Notation/Name:	Description: Reflections are rigid motion functions of the plane around a center point C such that: (a) The center of rotation, point C, maps to (C' = C) (b) Any point Q that is not the center of rotation maps to a point Q' on C with CQ such that $m \angle QCQ'$ is equal to the degree of the rotation. {which includes directionclockwise (negative) or counterclockwise (positive)} Notation: $R_{C,30^{\circ}}(Q)$ means rotate point Q 30° counterclockwise around point C.
Diagram C Diagram C C D D C D D C C D D D D D D D D D D D D D	 Description: Translations are rigid motion functions of the plane along a vector (path) with distance and direction such that: (a) any point P on the line containing the vector maps to a point P' on the line so that PP' has the same distance and direction as the given vector (b) any point Q not on the line containing the vector maps to a point Q' so that QQ' is on a line parallel to the line containing the vector on a line parallel to the given vector. Notation: T AB (Q)